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Further Results on Polynomial
Characterizations of ( F, G -Invariant and

Reachability Subspaces
PRAMOD P. KHARGONLI'AR AWD EROL [iVIRE-MENIBLR. 11iii

A,%sruct-ii paper is concerned with further deieiopmcni of the control problems with both approaches. The main funda-
unification between polbnomial mnatrix and geometric theories of linear mental concepts for the "geometric"~ theorv arec .
% %em% following the w~ork of Emire and Hlautu%. Etiui~alence betwteen invariant and reachabilitv subspaces (see Basile and Marro
different posnomiall characteri/ation% of ( 1. (,-ntariant and reachahilit% ~ n ohm[5) hra o h oyoilmti
subspaice% is shown e!\plicitI%. Seteral new result,. are giien which clarifx
the relation% between the poisnomial %stem matrix. irnariant %ub%paces. approach" the main fundamental concepts are the matrix
and , %%ern ferns. Finallis. a pol ' nomial characteriitation of and a con%lruc- fraction representations and the associated system matrices
tile procedure to obtain the largest %abilizabilitx subspace in kerll are (see Rosenbrock [211 and Wolovich 1241).

gi'en.A systematic unification of these apparently disjointed

1. INTROIDUCTON approaches is nect-;sary for a unified study' and a better
understanding of these problems as well as for possibleINrecent years two of the main approaches to algebraic extensions of these results to more general classes of sys-

4linear control theory for finite dimensional linear sys- terns. Although previously several authors have established
~1tems defined over fields are the "polynomnial matrix ap- sotme equivalences between these two approaches for several

proach" (see Rosenbrock [21]. Wolovich [241. and the purposes (see Emre [3]. [5]. Fuhrmann [7]. [8]. Moore and
references therein) and the "geometric approach" (see Silverman [ 19], Morse [201. and the references therein), the
Wonham [251 and the references given there). Solutions first systematic approach towards a unification has started

which are apparently unrelated have heen given to several with Emre and Hautus [6]. where polynomial characteriza-
tions of (F.G )-invariant and reachability subspaces have

Niafluscript recived June 27. 198Xll: rev ised April 22. 1Lis I and JuIN 13. been given in terms of tmatrix fraction descriptions and
* ~l14K]tPaper recomitmended hx B Francis. Past Chairman of (lhe I inear

Ssstens ( intce This work A~a, supported in part hN the U S Arm, system matrices. This approach has been based on a natu-
4 under Research Girant i)AAGi29-Xll-( 060IM and the U S. Air Force under ral realization of matrix fraction descriptions introduced

,trant AU OSR 7,-31o134 Mod 1). through the (enter for MathetitatIical
Ssstein Theirs. tiiersits of Florida. Gainessille. FH.. This paper is In by Fuhrmann [7]. [8]. which follows the module theoretic
estended %crsion of the paper 'A StruIcture Theorem for itol~nonlll realization theory of Kalma[11(eKlmnFlbad
Matrices andi 1. ()-inmariant Suhspaces.hs p) P Khiargonek~ar andt an[41se.lmn ab n
tinre. Rtine 1979 Arbib [15. ch. 101 for a detailed exposition of this approach

11 P' Khargonekar is s%ith tile (enter for Mlathenalica SNsten TheorN and Emre [41 for a simple derivation of the realization of
anti the D~epaurtment of Electrical Frigineering. Universits of Fl1orida. uran[][8bse onteipt uptmpi-
( raincss lle. Ft1. 12f,11 uram[118bae onteiptuptmpi-

F: Lnlre s% as "tith tlte ('enter for Mathematical S'~stent TheorN. Liniser- troduced by Kala 11.Ltr hsln frsac a
sits of Florida. (taincsille, 1i. 32611l tie is no%% with the t11cpartment ofala[4].Ltrthsinofrsrchs
ictirial E-ngineering. Texas Tecit Lnisersits. 1.itihhock. IX 74409 been continued by Khargonelkar and Emre [16]. Fuhrmann

WX18-9286 82 't0400-0352$00.75 1982 IEEE
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and Willems [10]. and Fuhrmann [9]. considering poly- Finally, in Section VI we present a polynomial char-
nomial representations and b' Hlautus I I 11. 1121, consider- acterization of stabilizability subspaces which play an im-
ing rational matrix representations. portant role in a number of control problems (see Wonham

The purpose of this paper is to present further results on 1251 and Hautus I1]. 1121). Our results on polynomial
the polynomial characterizations of (F.Gi)-invariant and characterization of stabilizability subspaces also lead to a
reachabilit., subspaces mainly following E:mre and tlautus new constructive procedure to obtain the largest stabiliza-
[61. and also establish an explicit connection to Fuhrinann bility subspace contained in ker/1 in terms of the system
and Willems 1101. matrix.

In Section II. we introduce some notation and pre-
liininarv results that we will need in the later sections.

In Section III. we first establish explicitl.*, the equiva- If. NOTATION AND PRIIMINARY Riist'i.is
lence of the polynomial characterizations of (I". ()-
invariant subspaces given in Emre and Ilautus [61 and In this section we introduce some notation, some pre-
1-uhrmann and Willems [10] for the case treated in the liminary definitions, and results that we will need in the
latter paper. In the latter paper a polynomial characteriza- sequel.
tion is given mainl, for the case where the transfer matrix Let K be a field. Let K I:I denote the ring of polynomials
is described as PQ 1where P and Q are polynomial in - with coefficients in K and let K(:) denote the field of
matrices. Using the results given in 161 for the general case formal Laurent series in the indeterminate : I with coeffi-
\%here the transfer matrix is allowed to be in the form cients in K. If S is any given set and p. i are positive
PQ 'R. we establish that the characterizations given in integers, then SP denotes the set of p-vectors and SP'"
1 101 are essentiallv the same as those of Emre and Hautus denotes the set of p X In matrices with entries in S. If x is
[61 specialized to the PQ ' case. Then again for the PQ I an element of KP(z) then (x). denotes the polynomial
casc wse establish a correspondence between ( F. G)-in- part of x. (x) , denotes the coefficient of- ' in the formal
sariant subspaces and the pairs of matrices ( FI. I, ). This Laurent series expansion of x in . and (x) denotes the
then is used to obtain a parametrization of ( F. G )-invariant strictly proper part of x. i.e..
subspaces for the PQ ' case. Then. for a given ( F. G)-in- (x) = - (.

%ariant subspace ''. we present a polynomial characteriza-
tion of all feedback matrices L such that \I is an ( F+ GL )- For a p X m matrix A whose columns belong to a K-linear
invariant subspace. Further. also using the relation be- space V. SpAA denotes K-linear space spanned by the
tween ( F G)-invariant subspaces and nonsingular factors columns of V. If V is also a K [: ]-module then ( A) denotes
of polynomial matrices established in Enire [4]. we show the K.:]-subnodule generated by the columns of A. Fur-
explicitly for the first time that introducing common fac- thermore, if f is a function with V as its domain and if a,
tors in the matrix fraction descriptions of the form PQ I denotes the ith column of A. then f(A) denotes the matrix
(thus cancelling some system zeros) is the same as making whose ith column is f(a,). Finally. if f is a function then
an (F. G)-invariant subspace in kerH unobservable by im f denotes the image of f. and if f is a linear mapping
state feedback. This extends and clarifies the research then kerf denotes the kernel off.
started in Wolovich [23] where it is shown that common Let T be a p x m polynomial matrix. Then K- is defined
factors can be introduced in matrix fraction descriptions of its
the form PQ ' by state feedback.

In Section IV. we consider a matrix fraction description K t: { l: p belongs to K[] and there exists a
PQ 'R and the associated system matrix T. Then we strictly proper vector q such that x Tq}.
establish an explicit module isomorphism between the In particular. if T is a square and nonsingular p X p
largest I F. (i )-invariant and reachability subspaces in ker 1, polynomial matrix, then we have
%here ( F. G. I/) is the natural realization associated with T
(see Fuhrmann 171. 18]. Emre [4]. and Section 1I). and those K = (x: x belongs to K"']: and T 'x is a strictly
of a simpler observable system in terms of the system proper vector}
matrix using the results of Emre and Hautus 161. This also and the map 'rr is defined as
provides a constructive procedure to obtain the largest
reachabilitN subspace in kertt for the PQ 'R case. for the r,: Krj: I- Kr: x"T(T 'x)
first time.

In Section V. based on the results of Section IV and Let Z be a p X i strictly proper transfer matrix with
those of [mre and ilautus [61. and introducing a module matrix fraction description
structure on the largest ( F. 6)-invariant and reachability
subspaces in ker/i. we establish a theorem on the invariant Z- PQ 'RI

factors of a a general polynomial matrix which generalizes where Q. P. and R, are r X r. p X r, and x X n, polynomial
and unifies both a theorem of Fuhrmann 17] on the in- matrices, respectively. Let T be the corresponding system
variant factors of a nonsingular polynomial matrix and a matrix (see Rosenbrock [21])
theorem of Moore and Silverman 119] on transmission
poblnomials which %%as later reprosed hv Anderson II and [Q R,
generalied by Molinari 181. P 0

i--.--..
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Throughout the paper our results will he in terms of the I-lautus 161. The reader is referred to Wonhan 1251 for
system matrix 1'. For convenience we will assume that definitions and other important properties of these sub-
Q 'R, is strictly proper without loss of generality, because spaces. Define the map w as
if Q 'R1 is not strictly proper then we will define .

R: 77,( R,) ~ 'lz 'lj

and we will then use the associated system matrix Letninia 2.4 16. sect. 3, N: Let to ".ifdb h
Q-realizanon of the p X in strict/v proper Irain fer inatrix

TI=[Q R I Z -PQ 'R tLU.

where U' is the unique p X mn polynomial matrix such that Let '1 be a given r X of poly~notnial imultrix. Then *Sp, *i is an
1'. (lQ)-invariaft .subspace if and onlyt if there exist consktatl

Z =PQ 'R+ u. matrices H,. Hi. and Fsuch that

Define the K-linear maps QH, + Rif, -'+(z:I - F,)

IQ: K Q -KQ: xi-ir( zX) Furthermore, SpA+1 is contained tin Aeril 4111 and on/vh

G:K "' K( ): t Ru there exists at p X if po/v-noniial matrix (1 such thiat

and H Pit f uk, 'P(:l- f")

H Q: K Q -KP:x.( PQ I-0 If the columnns of the polinonial matrix '1' are, A-linear/v
independent then there exist~s a linear inap I,,

The following lemma associates a natural realization of Z L Q-
with the system matrix T ~ ( .K

Lemnia 2.1171: Let Z be a p X m strictly proper transfer such that
matrix. Let P, Q, R. and U be poh'-noniial matrices such that

Z=PQ 'R+U (4+ GQ LQ) q IP F

where Q 'R is strict/v, proper. Then _v ( FQ, GQ, H Q) i s a (ie.. F, i. the miatrix representation of ( GQ~Lv) re-
realization of Z with Ithe state space K. Furthermore, 1 Is strict(-ed to Sp,* 1 wvith the columns of +1 taken as a basis /Or
reachable if and on/v, if Q and R are left coprime and E' is the K-linear space Sp, *I.) If T denites the associated polv-
observable if and on/v, if P and Q are right coprime. nomnial sYstem matrix iof Z then 7-( A' ) is the large~st

E.is called the Q-realization of the transfer matrix Z. ( I,). Go )-invariant subspace tin ker [1Q. F-urthiermore. if P 1
The following lemma is a slightly different restatement of a thenu KR is the largest ( fj,. G,0 -int-ariant .subspace in ker Ii/.
result in Emre and Hautus 16]. A polynomial characterization of the reachabilitN sub-

Lemma 2.2 [6. Theorems 2.5, 2.8].: Let (H, F) be a given spaces is given in the followking.
observable pair of matrices over the field K. Let Q and S be Lemmna 2.5 [6. sect. 61: Let 1I' be at given r X of poll-
a pair of left coprimne polynomnial matrices. Then we have nomtial matrix such that the columns of 'I' are K-linearly

independent and SpA*'1 is anl ( IQ,. (1Q)-invariatf .subspace.
H(I-F) '=Q 'S Let H, H_12 and 1 be as tin Lemmna 2.4. The'n

t Pk 'I* is at reachal'ilitv subspace if* and Ott/*v it there
if and on/v if exists a constanut miatrix 6 suc11h thut Sp, (ql(,,) C.Sp, R

- -~ ~ ~ ~~i il te columnn~s of the poiiynomnial matrix S constitute a dti ~,., .

b sis / t h i-iea .~~t' K im d) if Gi is a consant mnarix such that
il)te K-linear mnap

* 4 SpA'IGI = '5PA 'I'fSPA R

5:K' - K:then Spi'IG,, F1G,.. ,F,(, '(;,I i~s the lahrgesvt reachability-

provides anl isomoryphism between the pairs (F. H) and subspace contained in SpA'!.
(,, HQ) (i.e.. FVS = SFand IIQS= H). We now state the main alternative polynomial char-

We will also need the following result in the sequel. acterization of (FQ. GQ)-invariant subspaces given hN
ILemma 2.3 16. Lemma 3.131: Let A be a poly-nomnial Fuhrmann and Willems [101. In Section Ill we will prove

nmatrix and let ( F. G ) be a reachable pair of matrices over K. the equivalence of the polynomial characterizations of
Then A( zi - F) 'G is a poli-nomnial matrix if and on/v if ( !" GQ )-invariant subspaces'given by Lemma 2.4 due to

*A(: -I F) 1is a polynomnial matrix. Emre and Hautus and the following result due ito Fuhr-
The following two lemmas give polynomial characteriza- mann and Willems 1101.

tions of (FIQ. GV)-invariant subspaces and reachabilitY sub- Lenima 2.6 1 /J. IA'mma 4.2]1: Let E0 - (F I( (i) 11() be
spaces of the Q-realization of Z obtained by Emre and the Q-realization of the strictiY proper traisfier mjatrix.
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7: PQ of (I>,. (.y -invariant subspaces as stated Ii Leitina 2.6 is
(tic main charactcrization obhtained hN Fuhrmnn and Wil-

Let l Mhe a poh -loil na lilvX %U01/ dial S/tA A IV a V11hym"tt ferns 1101i. They have also considered tile case %Ahere
of A1V. Theni .Sl)'I Al ilta ( F"~ Gk )-/IIarint su~bvpaIe 11 and
011/v 11 there evist po/i'nlonia/ mlirfev Q. ( and Q, mcuh Z QR

(55 it the rcstrictioni that Q, and R, arc left coprimlc)
I N' Al ( oQ 'Qo, ), lioss csr. thle results in this case arc obtainecd uising file

1) 'H) ~st aIc- spacc lioim i rph ism t heorem Of 1 Lii rittan 11 lcjidar -
Il, hc Q-r-caliiations correspondiing Ili thle co prinmc fac-

ii Q 0 iiv/a (I Ut ilii torwtiosQ 1,ad Q1 in( siing. their main resuilt
h i aoal ) for tile case / -lPQ '. Therefore. ss c restrict our at ictioil

Ih i ltin siig linia is as, itt iira rs of som imclf t It result to t heir maiin c ha rac teri/a Ii U gi~ cii i n mma 2.6.
Fin 1 5 IS lhcorcins 1. 21. Furthertmore. for a gisco (F 6I. C' -ins ariaw ISUhspacc 111.
Lemma 2 /. Let R he at p - tit pol i nnal mau,, X. L', "es giv sc c haractcritat i (n of all fccd hack mat ri ces /. titc.!i

he i l ill I iltir If: i po)I iii)tial mltlI.i. Th nli lt i /l t hat *I is (F - GL. )-ill% ari ai Ill t criis (f poINi i i o i a
Ing' sitement' aire eqir'aent: mahtriccs. We establish a correspondecric hct ss cci

I QI.% a righ/t fatiir of R . ( Fo. Gk' -ilsariatlt s.LlbSpaCCs, and pairs of constant mat rice,
11 F/hee' s ',t Poll nunuaf nItt-Ic- V(i ,SI aneng ( // (I. F, ). and gi% e af pa ra oldri tat ii of t hcse suhspaccs Iii

/01 t tqinmu Il 11/1 Q, ) andl (olw tan mta(ties 11 ndF smil terms of the pair,, ( I/,. F, ). I-inali\ for at gis n strictlk
t/hat propcr transfer matrix ss ith the ma~trix\ fraction reprcscnta-

tioni PQ 'and (tie associatcd Q-rcaliation i -(' '. /,-)
Q, Is, \%I 1 -F e show% for the first timc. cxpL citl\. tilc relatio~n behctsscci

i;-,.G(, )-invariant suhspaces in kcr III, and thc commnon
andnonsingular right dif\isors of P and Q \,\ hcrc 0 is fccdhack-I

R11 I'( : F, I. equivalent to Q. Wc gisc explicit charactcrization of' these
factors in tcrms of, ( F.(;(,)-invariant sNihspaces fin kcr //,,.

Ini Section V %%c s%%ill obtain at gcneralization of af theorem .Ihis. in particuilar. shiovs e\plicitl\ that1 Can1CCIllne coinl-
of Mollic and Sils rnian (191. For (lhe sake of coiwplte- 01011 factors hctsscn P and Q and thus rcmios iii sonic of

ncss ssenossstat thi thcrem.the ss sten /cros correspoiids to making I /-I- (/,, -iisariant
Uu[/9,28 1 .j Let E (I F,G. /I )N ae I tfliuIitil suhsaces in ker I/(, unohscrsahlc h\ state fccdhack. Prcsi

reii:anuin oIf a stritW/ prupetr trnnfcr minsI 7. an Pl t P, OusisN partial rcsults onl this problcm ss crc ohtainiid hs
be~ the /,zrg'lst ( F (, -iariant v.uhbluue fi t If andl %P, be Wolosich 1231 \% hcrc it s\ias shoss n that at nonsinzioular rit
/u' lrgevt It'ch~abhit Vihspit Ii ken/I. Then the lioncun- dis isor of 1) Could he cancelled h\ statc feedback. I icrc sskc
%tant iniariant fiRIn fsol/t'e hnealr Inup/ indl( i'd i ( F' G1 I consider all possible lions igular rigzht factors of P' and
itirte I. I it( h t/hat ( F - (11, ),'it C 'P%'-,I on i \PR " .'H 1"' Ilhos% explicit],\ the relation oifI~ G,, i-insariant sUhspacc.
ante a\ tit' now on stani t tiniant fih 101.5 of R in I ivi 'f i erI oth i atr fI.po dn

/a( tori~~tmon in ker//(, to ti~leit nonsingular cosO ' r01.1 2.
upnimlu fai '~tiZ~iiul? sha ractc ri/at ion of t hcsc factor,, ill termst ifl theise subI,-

7 Q R spccs.Thcse rcsults, gcnerall/c thce rcscarch siarted h\
Wolovich 1231. also tnakiili a conneccuion to tlic -,glclcc

of / It hh aire thfe samet atv tit', mnerator po/tnmtii tin the thcor\ of' lincar ss stns.
Smnithi Mifi//a form of Z. It is wcell k noss\ ii(scc. c.'a.. IRanUsP aild I IC\.miIt 113

Thcorcms 5.101. 5.1l31) that if 1, is, Ii\ III I cotit

~,. NIF( A IO ~. ttNAI~t*matrix. thcn

4 (I RA( ItI RI/At t ONS ANt) A PARAMt I RWiA I ION 0it (j :(4) C'If /.if
4 1 ~~F. GH' 1-NARIANt St 'tSPA(t I Thus. for a feedback miatrix IL thc pius miimial iati i

letF n ""and(,inK'' h arcchhlepar f : Q -U 1 corresponds to tile pair I1 T i I . F or th)cLe pr iof of tn 6c ma in te herc recal paf totifet,~ sIiihc i
mlatrices. [et W and Q hc i it and if tcoprimc ano copfct conein hee oti,,sect n d ifct pol normal

*p01% nomial matrices such that nepiiconcinblec tledfrnt0\101,1
cha racteri/atIions oif ( Tv,. ("v)-insariant suhspaccs. %% c \% Ill

7. . -Z C' tnecd ifm uodified version of af result h\ '.1 Iulln 14d.
Theorem 4.31. This resuilt provides af natural A-isomtir-

Let E , ( fv. Gv. I/(, ) he t he Q-realization oif Z. In tIhis phisin hctmeen K,, aid K,; considered ats sector spaces.
section. first \%e establish the equivalence oif the polviomiial Hecrc \%c gisc at simplcr ttc\% proof of af %liglt Corrected

*characteritatIions of ( f(,. C'0 -ins'ariant suhspaces ohtained vcrsion of this result %\here sc assutme that Q is propcr.
b,, rlmre and flauts 16) and those obtained h\. Fuhrntanti (Note that if Q is either ro%% or column proper. tist.
t and Willems 1101. These characteriiations hasw heen stilted cotidition is aulomnaticalk satisfied.)I
in Section 11 its Lemmas 2.4 and 2.6. Thle charactcri/ation Decfinlc tile map
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(, K : x-.(Q '.) But we also have

To see that the map T C, is well defined, we need to show Q jI +z l'
that(QQ 'x). belongs tog K for a given x in KC. Let vb Q :Il1
the unique polynomial vector and q be the unique strictly
proper vector such that Thus. TI,,; (x) does not belong to K, and. hence. the map

lVQ , is not well defined. This example shos s that T,; is
QQ x = v+ q. not well defined in general. unless Q ' is proper.

Lemma 3.1 is verN useful since it provides a natural
Since x belongs to K trtyropconnection between the state-spaces K and K,; of IIQ
Q I is assumed to be proper, Q 1q is also strictly proper. and WQ '. respectively. In the following theorem we
Hence.(QQ 'x). belongs to K() and the map T(., , is well establish an explicit link between the polynomial char-
defined. acterizations of ( I'. G(,)-invariant subspaces given in [61

Lemma 3.1:" Let tha Q ise m X n nunsngular poly- and (101.
nunal matrices such that Q t is proper antd i'heorem 3.3. Let I he an in I' q puli nomial matri.x . u 1

Q Q + L K' that its columns (re K-hnearh" independem. Let Q he
stri(thr proper. Then rli(, followming .taten'nt are 'quit al'nt.

fur some it > n constant matri.v L.. Then 1Q; , IS a K-rector a ) SpA " Is an ( 1- (i, )-mnariant suhspa(e.
space isomorphism. N (6. Theoreti (3.1 i] There exist Inhfrlc " , IIe 1, 1 .1

Prool: It is known (see Fuhrmann [7. Corollary (4.9)1) 11, in, K"... 111,/ 1., in K" %U(/h that
that the dimension of the K-vector space KQ is the same as 1) QII H It, - V(:1 F,).
the degree of det Q. But the degrees of det Q and det 0 are c) There '\v. e (i an i - q poi(linonma iu\ 1i and iicrc
the same. It follows that dimensions of K and KC; are the e.\lst tnatrue(' Hl in K'" ". F, in A "i . and I in A" ' % Ii

same. Furthermore, it is clear that T ); is a K-linear that q ue deflne
mapping. Thus. we only need to prove that Tt); , is one to
one. If x in K,; is such that Q: Q Q .tI

T ( x ) = 0 then it I' have
I) Lt)(- It') -- 1, aod

then by definition (QQ 1x) is a strictly proper vector. i0) 1t, - f^(:/ 1-,
Furthermore. it is clear that (I. e., the ia.'c ol t .he suhspa e Sp, I* under the map L';,  I

QQ = ! + G Sph ," 7'khuh is F''-t Invariant )QQ I + Q;I Vl/Ii ciir~n
d) [10. iheoren 4.21 There , AI'I's all in ?, I1110110l1,'u-

%%here G is strictly proper. h then follows that x is strictly lar po-nontual ,natri.s Q. and att "i i constant mnatrix I.
proper. This yields _v = 0. -] such thlt ./Or

Remark 3.2: Lemma 3.1 is stated in Fuhrmann [81 Q: Q
without the assumption that Q ' is proper. We will now0I
show by a counterexample that Lemma 3.1 is not neces- 1) QQ. I a pollnmnmnal matri. (I.e.. Q, Is a right
sarily true for arbitrary Q. Let us choose nn xmnmuthr factor 4 Q l

+*11)Sp, I ((Q 'Kt);
QI l Proo. The equivalence between a) and b) is ctab-

lished in 161 and the equisalence betmcen a) and d) is

It can be easily checked that Q is not proper. Let us established in 110]. Here we establish the equivalence bc-
choose tween h). a). and d).

j W). e have

Y~, 4QI1, + 1, - V:1 I").

which is feedback equivalent to Q. Then we have Multipliing on the left b-I lVQ we get

I -i J I'i ,fQ 'tU, = I$Q I'(:/ -- F,). (3.4)

Taking polynomial parts on both sides of (3.4) 'se obtain
.hich is not proper. If we choose

Wilt1 (11,Q T1). (:I f-") +(wlQ 11T)

Since (I 6 is a reachable pair and IF and Q are right

in A;. then coprime. it follows from 17. Theorems 4.5 and 4.71 that the
map

L~~X Kt JI K1" 1 '1- : -:.\ ,: )((/.V)
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is a K[:]-module isomorphism. Furthermore This establishes the equivalence between b) and c).
c) ,d): Let L be as in c). Let Q2. S, be a pair of

X(x) = i(v. ,,)(Gx) = (zi - F)((:I - F) 'Gx) relatively prime polynomial matrices such that

(.I - F)(WQ 'x) H,(zI - F,) '=Q2 'S-

and since X(x) is a constant vector it follows that Since the columns of V are K-linearly independent and

T~v , is an isomorphism, the columns of the matrix V are
x(x)=(WQ- x) also K-linearly independent. Now, by c-ii) the pair (11, F,)

Thus, V,: =(WQ 'V) , is the image of V under the is observable. By Lemma 2.3, S, is a basis matrix for K,:
K1z]-module isomorphism X and, hence, SPAVI is an as a K-linear space. Then c-i) and Lemma 2.7 imply that
(F, G)-invariant subspace. Since the columns of V are Q2 is a right factor of Q. Finally
K-linearly independent, the columns of the constant matrix
V, are K-linearly independent. Further remembering that

FQ( V) = : V - QHI = VF, + H2, which implies

b-i) is just a rewriting of the equation SPA V = TQ6 ,(QQ2 'K(,.

FV, = V, F, * GH,. d)-c): Lemma 2.7 and d-i) imply that there exists a

If we define L by polynomial matrix V and constant matrices H,. F, such
that

LVI - H, OH, = (zl - F,)

then we obtain
where

(F - GL )V I = V, F,
H,(zI- F,) I= Q2Is,

i.e.. the feedback matrix L makes SpV, an (F-GL)- F)

invariant subspace. At least one such L exists since the for some polynomial matrix S, left coprime with Q, (which
columns of V, are K-linearly independent. With this choice by Lemma 2.3 constitutes a basis matrix for K.: as a
of L we have K-linear space). It is given that

L WH,= L (ITQ 'V/) zi1- F,*H_. (3.5) V i=TQ6 ,(QQ2 'S')

Adding (3.5) and b-i) we get But we have

(Q+ LWT)H=(V+ I.(1Q '").(:1 f"). QQ2S=,.

If we define Hence the proof.
Remark 3.6. The proof of Theorem 3.3 suggests a pro-

V + L( 1T'Q T'). Tt;t, cedure for characterizing the set of all feedback matrices L
then we get which make SPA 1,^ and F6-invariant subspace (correspond-

Ing to the ( F- GL)-invariant subspace SpK(WQ IV) ,I)

QH, =  :1- F ). %uch that the matrix representation of F6 restricted to
• fPA I is F, with the columns of V as a basis for Spd:J'. In

Since TQ is the inverse of T . ,e als hae particular

V=TQ QH, + 1t, = V( :1 - F,)

S4c) We have and
" Q~H, = 1(:/ F :, ).(Q + LT' )H, ;(/ F,)

Multiplying both sides by QQ on the left and taking if and (nlv if L is a solution to

polynomial parts, we get

QH,=(QQ 'V).(:I-F,)+(QQ '') I L(W 'V) I112.

Define As shown in the proof of the preceding theorem this choice
of 1. leads to the equation

H2:= (QQ w/) ,L(WQ '1) . F(WQ 'V) 1=(WQ 'V) ,F,+GL(WQ-'V)_,

Then we have which makes (WQ IV) lan (F- GL)-invariant subspace.
QHI + H2 = V(zl - FI ). Thus we first calculate the full column rank constant
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matrix (;VQ [t) Iand then solve for 1. in the linear umins. for an-* arbitrarv but fixed q. It is sufficient to
equations over the field K: consider such pairs of matrices ( I/. F, ). since for a given

q-dimensional (~,j)-m% ariant suhspace 41'. we can find
L( WQ TV) I1=2./ an i> q polynomial matrix I' and R." in K dand 1'

Remark 3. 7: Now we will show that there is a corre- in K such that
spondence between the pairs 11k I/ F) and Ijv. (,*,)-in-QI 1  I.[:-F
variant subspaces and we will obtain a parametrization for

F. GQ )-invariant subspaces in terms of the pairs ( I/,. t',). and
For this we first show that we can associate an ( F,, GQ )-in- s,1
variant subspace with a given pair ( 1 ., Fj) Given a pair ~I ''
( H F,) we will associate with it a polynomial matrix V Such a t'. clearlIN. has A-linearly independent columns. Let
and a constant matrix H, such that us express V as

Q111 + H, =V(:1I- F,)

Then by Lemma 2.4 SPA V will be an (, GQ,)-invariant It now, follow~s that
subspace. Co do this, first we express Q as V, Q, o 0 /11

Q = Q1:1+Q, :11 + Q. Q1 I Q; 0. /I1FI

and then define. .(.)

- H,2: =Q,H, 1 ' +Q, H1 f-( I +Q(H Q,111

(which is called the right functional value of Q11, at F,). Furthermore. V has full column rank (over K Iif and only
Then by the generalized Bezout theorem (see Gantmacher if the left-hand side of (3.8) has full column rank. If (h2,

1 1958, ch. 41). (QH, + H1,) is divisible on the right by and ()are the entries of the matrices //, and 1', then the
:1l - F, ). Therefore. there exists a polynomial matrix V entries of V are polynomial function,, of ( h. ',, and ( ' A.

such that given by (3.8). Let P(H F,* ) denote an N-tuple wkith q q
minors of the left-hand side matrix of (3.8) as its entries.

QH1 + 112 tV(:I - F,) (These are called the Plucker coordinates. Here A (mi)
In fact, since H,(W - f1j) is strictly proper. the poly\- Thus, the Plicker coordinates of I'( H,~ F,) are pol~nomial
normal matrix V- is given as5 functions of (h,,) and (fJ,,). It now follows that V is full

V= (Q,(z1- Fcolumn rank iff P( H,. f',) is not the zero vector. Thus, the
V = QH, :1 1) ) .pairs ( 1l, F, ) that give full column rank V correspond to

Conversely, given a polynomial matrix V such that SpA* the complement of an algebraic set, Furthermore, two such
an ( ~ th matices A pairs (H,. F,) and (fi, F ,) give the same (F. G,,)-in-

an ., G,,)-invariant subspace e mtie ,adF are variant subspace if and only if there exists a constant
give bynonsingular q xq matrix a satisfying

FQ( V ) = 7z (V) = --V - QH, a

and This can happen if and only if

*FQ,(V) =VF,+ H, v( I/,. F,)=P(11 t1 )det a.

where the last equation states the fact that SPA.V is an Hence, the class of pairs Hl is K"" q and F, in K q that
(FQ.Q)-ivarant ubspce.give rise to distinct q-dimensional (FO.G,,)-invariant sub-

However, this correspondence does not completely char- spaces correspond to the complement of an algebraic set
acterize ( F,. GQ )-invariant subspaces. since for a given pair modulo the equivalence
(H,. F,). the polynomial matrixI/ ,ianolyfI;H,,=v(i t

V=(Hz F,) I 1 1 F)i~., tnoli I 1 FV(~.t)
where c' is some nonzero constant.

may not have K-linearly indepen~dent columns. Also, two This constitutes a complete parametrization of q-dimen-
different pairs (H,. F,) and (H, Fl ) may give rise to sional (F,.GQ,)-invariant subspaces in terms of pairs
corresponding polynomial matrices V. V such that Sp, V= M, F,)
SW. We shall first characterize those pairs of matrices 11, Remark 3.9:- Let Z: =PQ Ibe a p X rn strictly proper
in K ~ and F, in K l that correspond to an in ~q transfer matrix, where P and Q are polynomial matrices

polynomial matrix V having K-linearly independent col- and Q 'is proper, and let ( F 1 G, Ht,) be the Q-realiza-

4
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tion of Z. We will now show explicitly the relation between IV. Timl: LAROL:SI ( F, ( )-1'% ARIAN I AND
(F..GQ)-invariant subspace in kerH, and common right REACIIABliIIrY SUB.SPAIS IN kerll AND liln SYSI I M
nonsingular factors of P and Q where 0 is feedback MAIRIX

equivalent to Q. We will also show that cancelling the
common right nonsingular factors of P and Q corresponds Let Z be a p x in strictly proper transfer matrix "ith the

to making an (tF.(Q)-invariant subspace in kertl/( un- associated system matrix

observable by state feedback. Q R
By Lemma 2.4 an m X q polynomial matrix V with I p P _

K-linearly independent columns spans an (F( ,G, )-in- where P, Q, R. and U are p , r r. r , m, and p - i
variant subspace in kerH if and only if there exist con- polynomial matrices such that Z PQ 'R f C and Q 'R
stant matrices l. H_,. and F, and a polynomial matrix V, is strictly proper. Let (E .G(- Ii() be the Q-reah/a-
such that i L

tion of Z associated with the sstem matrix T. In this
QH, + H, = P'(:l - F) section we will be concerned only Aith ihe largest

If',. G( )-invariant subspace in ker 1I¢. denoted b\ '1,,. and
PH---V,( 1 - F, ). the largest reachability subspace contained in kerII¢, de-

By Theorem 3.2. there exists an if \ ni nonsingular poly- noted by +'R. In particular, if Q is an (r + p) (r p)
nomial matrix Q feedback equivalent to Q such that nonsingular matrix such that Q 'T is a strictl\ proper

transfer matrix, and E.; ( . GC). H(,-) is the Q-realization
QH, =(: - F,) of Q 'T. then it will be shown that '+, and '', arc

K[:]-module isomorphic with the largest (F/-;.(,;)-in-
where variant subspace in kerH6 (which by Lemma 2.4 is K,

1 : Tc,(V). and the largest reachability subspace in kerH,. respec-
tively. This result will then be utilized in Section V to

Let Q2 and S, be left coprime polynomial matrices such obtain a generalization of a theorem of Moore-Silverman
that on transmission polynomials. (For details see Section V.)

By Lemma 2.1, (F . H6) is an observable pair. Thus. for
H,( :l - F,) Q, 'S,. any system (F, G, H), the largest (F. G)-invariant subspace

Then by Lemma 2.7 we see that Q2 is a common right in kerH and the largest reachability subspace in kertt are

divisor of P and Q. Thus, SpAV is an (FV.GQ)-invariant isomorphic to corresponding subspaces of an observable

subspace in kerHQ only if Q2 is a common right divisor of system. Using these results we also give a new constructive

P and the subspace T (Q 'K.,) is made unobserva- procedure to obtain the subspace 't', for the case Z=

ble by state feedback. PQ 'R+U.

For the converse, we assume that the rank [over K(:)] of By Lemma 2.4 there exist constant matrices ! -i-
P is m. Let Q2 be a right factor of P. Then by Lemma 2.7.
there exists a polynomial matrix S, and constant matrices matrix TH,(zi - F,) - constitute a basis for the K-linear
H, and F, such that space K. Furthermore. if 1 denotes the K-linear map

Q, 'S, = H( z1 - F,)' 7r: Kr - K Q:

and then 7(Kr) is the largest ( F, GQ% )-invariant subspace con-
tained in kerHQ. Let us define

PH, =V,(- -F,)r~(D = H (:I - F,

for some polynomial matrix V. Then. as in Remark 3.7, we
can find a polynomial matrix V for which there exists a We now define a K[z]-module structure on K7 in the
constant matrix H2 satisfying following way. Let x be an element of K,. Since the

columns of the matrix 4 constitute a basis for K. there
QH, + H2 = V(zl - F,). exists a unique constant vector g such that

Then, by Lemma 2.4, SPAV is an (F,GQ)-invariant sub- x = g.
space in kerH. Note that we can also find a feedback
equivalent matrix Q such that Q2 is a common right divisor We now define the scalar multiplication by : by the rule
of Q. Thus, we have explicitly shown the relation between
(FQG,)-invariant subspaces in kerHQ and common right zx: =Fg=TH (zJ- F1 ) 'F~g
nonsingular divisors of P and Q where 0 is feedback T(zH,(zl-F,) 'g)
equivalent to Q. The results given above make contact with
the geometric theory of linear systems and generalize the It is clear that this definition of scalar multiplication by z

Lwork of Wolovich [231. 
gives Kr a Klz]-module structure. Now we will establish
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the isomorphisin between K' and the largest (It. G'.)-in- i.e., vm(x) - ir(x). Now, if x, is an element of I., th n
variant subspace in ker 11, in the following, there exists a unique constant vector g such that

Theorem 4.1: The map 1r

7T: A', -- K(): and if wse define

Is a one-to-one K-linear tinap and image of 7r Li , X: Fg

Proof It is obvious that 7T is K-linear. If v is not then x is the unique constant vector in K, such that
one-to-one there exists a nonzero vector .x in K, such that

. 7,: (x ).

(x) = 0.
These considerations allow) us to define K: J-module struc-

Since columns of D constitute a basis for K,. there exists a ture on q'l, in the following natural way. Define
unique constant vector g such that

X = "r,(:.\) = Org(lFF1 ), I'gs L g.

which makes a K ' ] -module homomorphism. Thus. 7 is
Let us partition tI and .x in accordance with T .is a K[:j-module isonorphisin between A, and q'l,.

Remaurk 4.3: We can obtain a basis matrix for the1; t
1l, and ( -o, (-invariant subspace in ker ll( as folloms. l.e[ le
H, an ( r p) K (r i p) unimodular matrix such that

Then %e have T,

.i, _[ O Rlri',1]

1- -P c', - ' g where T, is an I " (r - mII row-proper pol\nomial m
Let at* ' 1''.a be the row degrees of T, Define

and

,":(x) .s\ -Q~1( :-I - F,) g + RJLZI FI 0 .
and

Multiplhing b, PQ on the left we get

P1( :/ - F,) y+ PQ 'Rfi,(: - F, 01: -- diag( i". 1^',. .1.

Then it is shown in [6. Corollary (7.6)] that the columns ofwhich can be rewritten asthponmilarx the polynomial matrix

PfIj,(1I- F,) g-U :- F, ) 'g Af=.,,["

+ Zll,( :I - 1--, ) .1

It now- follows that constitute a basis for the K-linear space K,. If we define

"C' =- M ,t( :1 - F, 9. VI =7-.(

then by Lemma 4.1 the columns of the matrix 1, constitute
Since x. is a polynomial vector and Zfi,(:I -F ,1 ) ly is a a basis for the K-linear space "'Lr

strictly proper vector. we must have In the next theorem we show how the largest reachability

i.r = 0. subspace *R contained in ker H(, can be obtained from K.

Thus we have Theorem 4.4: Let G, he (I (•ont.lat iatri." such Itia
cohlmns of 4G, span the K-linear space K, fnSp, T. Then we

x =0. have

Using Lemma 2.4. im = *A*,. El- S F1G...F' 'G;).
Remark 4.2: Let us define

V: = 17(0) Proof' Let us first define
4 UV: =i (0).

(i.e., V is the upper part .of the matrix D partitioned

according to the partition of T). Then the columns of the If G, is a constant matrix such that the columns of I';
polynomial matrix V constitute a basis for the K-linear span the K-linear space 'l',nSp, R. then we have by
space '*, since i" is one-to-one and imir is 'r. Let 7 be Lemma 2.5
defined as

17',: Kr - *v f : .v" '-, (x.) *['R -5PA" W /[G-2 FIG-.2 "" *'-F"q ;]



KIfAK4(JONIKAR ASD i-MRtI PMll I NOMIAI ( HIARA I ItI/ A IIONS (ii 1 IN)I N ARIA NI AND RIA( I IAHI II I NIS AI' IS 16N1

Thus. if we prove that the columns of [,( span the (onverselv. let xv, he an arbitrary element of SpAI6 r.
K-linear space '4',,,Sp, R. then We A ill pro% e that x, also belongs to '',/r.iSp, R. Let ( he

a constant vector such that

FSl ,G t .i I , '

?Ti( St, 4[GI" F(6 .. ..t1 , i(;*, 1).If cle

So let be an arbitrar, element o" '(/llp,/ P. Ilen
there ei~ts a conmant vector d, such iha then x belongs tto K trSpe, T and, therefore. there exist

R d , trnlt att vepr erto rs d .d 
adn such that

alnd .1 Unique constant vector g tpch that X. .

I It follo s that

Let us define

X, Qq -

, •RR, 
h

.

: q~g \: hetre

for some poR Qdnohial vector.-,. Since xe belongs to K there' 4, Q PA R.i p

exico msorifI Proper vetor.,,sp tK and q'l NuChR that

whc canc be rerttnascm lete s t roo anf the thorm -ti\poe. '

X. I- T Q .Rd, is also str ict at proper. Conisequentl\

d' - 0.
It 1t01h0as that

I I Qq, Rq, t Rds.  e tus

anultiplnuing i e t PQ s.we ha\ I . Rd t u in( r

'ql PQ f'Q Rq- PQ 'Rd, aFnd tht-refore i belongs to itcnp R. This proes thal
columnns of 1'(1 span the K-Iear space d. 5PA 'i lagt ilh. This

hic can ie rewritten nd complete,, the pnoof of tte theorem. e
Rtmark 4.5 Let 0 be a (ollrowin- rfc not:in-ular

-- P 5 q Z( ,- Ud L

--Pq ~q:Z~q- d~ a  di. polynomial matrix such that ' I i a strictl\ proper

NVi. ha\e rational matrix. ( is obvious that su hat rices ( exist.)
Let : belons to6 H) be the -rezatin assoiated \ith

, t lq - Pq  the Strictly proper transfer matrix IT. BF Lenunoa 2.4.
K is tite largest (sat;s K-in\ariant subspace in r

a thereeists cons tFurthermore. if Gi is as in Theorem 4.4. then

N Z( q, - iv arLianu SpbspGe 'IG " "F1 i G In is the largest reachabilit Sub-
,pace contained in ker/i denoted h\ st. \'il thein

Since Z is strictvr proper and (qi - d, is proper. it follows interpretations for K, and and using Theorems 4.1 and
that 4.2. ae ca in the folloing fact:

X\ , : U I g 1 K I  - q i!

and we have is a K [:]-module isomorphisr. s, that

l t th K-linea Ts SP . 1) vari(an s p id et
Consequently, y belongs to the K-linear space Sp, T and and

also to Kt, and hence belngs to Sp,, TnK . Furthermore. 2) 77( *1 ) R,

since the columns of l(PG span the K-linear .,pace Ktn
Sp, T. there exists a constant vector c Such that Thus. 7', is a K-linear map that maps tihe largestI#,.(t)

invariant subspace in ker/1 Q, and the largest reachabilit.\
x = iIG suhspacc contained therein onto tihe largest ( 1Q.( t,!-in-

and hence variant subspace in kertt ) and the largest reachabilit,,
i =:l'Gi{subspace contained therein, respecti~eI\,. Recall that

f 11; ! is an observable pair. Thus. the largest ( ').G -in-
(i.e.. V, belongs, to the K-linear space Sp, V6, ) variant subspace in kerH and the larges t rcachabilit.\ "ub-
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space contained in it can be viewed as the corresponding We also specialize our results to the left and right
subspaces of an observable system, namely v-,. polynomial fractional representations which leads to sim-

Remark 4.6: It follows from the preceding remark that ple characterizations of transmission polynomials in terms
any constructive procedure for obtaining the largest of numerator polynomial matrices. Finally. we derive a
reachability subspace contained in kerttII for the Q-realiza- simple result which will be used in the next section to
lion of the strictly proper transfer matrix 0 'T can be obtain polynomial characterizations of stabilizability sub-
used to obtain the largest reachability subspace contained spaces.
kerIl. for the Q-realization of the transfer matrix Z. A To prove our main results of this section. first we
constructive procedure to obtain the largest reachability establish the following lemmas.
subspace contained in kerHj; for Q-realization of Q 'T is Let the row rank [over the field K(: )l of the pol.ynomial
given [6. Theorem 7.71. Using this procedure, we can obtain matrix T be -y - . Then there exists a unimodular matrix
a polynomial matrix *R whose columns constitute a basis M such that
for the largest reachability subspace contained in kerl.
Then by Theorem 4.4 and the preceding remark, it follows MT
that the columns of the polynomial matrix 7r,((F) con-

stitute a basis for the K-vector space 'R. Thus, we have a where t' is a full row rank lover the field K(:)] "Y
constructive procedure to obtain the largest reachability polynomial matrix. Consider the map f: K,
subspace \1R for the Q-realization of Z. K"l nomTKi:a : vMx. + MTK"[:]. Let I and ( , be

constant matrices such that

V. A MODULE THEOREIIc APPROACII I0 Spl, TL I = SpA (PGI = K7nSpA T.
TRANSMISSION POLYNOMIALS

We will first prove that f is a K [:]-module homomorphism
Let T be a u X P polynomial matrix. Let Ht. F, be with (TL,) as its kernel.

constant matrices such that the columns of 0: - TII, :l Lemma 5.1: J is a K [: ]-module homorphism.
F,) constitute a basis for the K-vector space K,. As in Prooj. For ... \ in K, we have
Section IV. we define a K[:]-module structure on K,. For
a given x in K,. let g be the unique constant vector such f( .A .v ) - 4 Mx, M.\, + MTK[:] f(x) -f(.s, .
that x = TH(:! - FI ) 'g. Then we define the scalar multi-
plication by : as Let g be thc unique constant vector such that

:x:-T(t:H,(-I-F, g)g =TH,(:I-F,) 'Fg. x,(bg=T1,(:/- F,) g.

Then we have
In case T is square and nonsingular. it is shown by Fuhr-
mann [71 that K, is K1:1-module isomorphic to .i(. )=f(TH,(:1 - F,) 'Fg)
K"[.]/TK[:] and. hence, the nonconstant invariant fac-
tors of T are the same as the invariant factors of the =.f(Tt-,:(:I-F,) 'g-TH g).
K[:]-module K,. In general, T maN not be square and
nonsingular. (For example, the system matrix is not neces- It noy follows that
sarily square and nonsingular.) In this section we gener-
alize this result using the generalization of K, given in 161 .V(:x v :Mx -MTHg + MTK[] :.f(x).
(also see Section i), and prove that the nonconstant in-
variant factors of the quotient module K /(K SpT Thus._fis a K[:]-module homomorphism. El
are the same as the nonconstant invariant factors of the The kernel of the homomorphism ./is obtained in the

polynomial matrix T. This fundamental result also leads to following.
the following generalization of a theorem of Moore and Lemma 5.2. The kernel of is the K []-suhmodule (TL,

Silverman [19) (see Lemma 2.8 for the statement of this Proof- It is clear that
theorem) on transmission polynomials.

Let T be the (r + p)X(r + m) system matrix associated f(Tl 1 ) MTL1 * MTK' 0.
with the matrix fraction description Z--- PQ 'R + U. and
let LQ: KQ K"' he a K-linear map such that (f) + Furthermore. since f is a K [:]-module homomorphism. it
G L0)*,[u c_ *%. where *, denotes the largest ( F,,, (.)-in- follows that f((TL,)) = 0 and. hence. (TlI,) C kerf.
GQ LQ)IS Is.wee'',dntstelret(~ ~)i- Conversely, let r in K, be such that fcy) =0. Then therevariant subspace in kerII(,. Then the nonconstant invariant ('nesl.ltxi r b uhta.()- .Te hr

varit s e ont exists a polynomial vector h and a strictly proper vector q.factors of the linear map induced by (IE + G L ) on
factors~~~ of thoiermpidcdb k. such that v = Tb= Tq. Let h be represented as b,, 4-+,

,/'R are the same as the nonconstant invariant factors ' 4 - - . etnKbearepresene Further-
of the polynomial system matrix T. (See Theorem 5.5.) . + h: " where h, are in K and h is nonzero. Further-

For the case where Q = (:I - F). R G. and P 1 this emore, since x belongs to K . there exists a unique constant
theorem is also proved by Molinari [181 and by Anderson vector g such that x = (g. Now we have
[II for a canonical ( F. (,. 11). Our results, based on the h

natural K[z]-module structure on *,, and *,, unify and T b,: F-TII,(:I-- F,) 'g.
generalize the results in [7) and [191. 0
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Multiplying by : 'we get We have proved that

Tb, TH,(:I-F) ': 'g - N Tb,:' ,. imf +MTK"[:I: a in KI[:].
I -

The following theorem is an immediate consequence of
Consequently. Tb belongs to K, as well as to SpAT and the preceding lemmas, and it relates the K[:]-module
hence to SPA TI.,. Furthermore, there exists a unique con- structures on K, and the natural module structure on
stant vector c such that K '[:]/TK"[z].

Theorem 5.4: The quotient module K, r(K, N5 pA T)
Tb ='"c = TI d:I F, iA K [ : ]-module isomorphic to K[ z / TK []. Furthermore.

Comparing coefficients in the two formal power series the nononstant invariant factors of the K1:1-module
expansions for Tb, we get K r/( K I nSPA T) are the same as the nonconstant incariant

Jactors of the polynomial matrix T.
Tb, = - TtIIF( 'c. < I / - I Proof: Let i, be the projection map

TH, ( : - F, ) gI g T1t,(:l - F,) IF[c. 1,: Kiz]/MTK[:1 - K I:I/j'TKI:]:

It now follows that [a]+MTK'[zJ-a + tK zJ.

= Tb- Tb:' + Tb,:' It is clear the 1, is a well-defined Kiz]-module homomor-

/ phism. Using the results of Lemmas 5.1. 5.2. and 5.3. it
Til(: - F,) Ftc - .l Th. follows that the map i7,f is an onto K[:-module homo-

morphism with kernel (KNSpAT). Hence. by the funda-
Consequentl.. since Tb, belongs to SpATLI , x belongs to mental homomorphism theorem (see Lang [17. ch. 3]). it
(TL,). Thus. f(.)-0 implies x belongs to TL,). This follows that K,.,(KSPAT) and K"[zJ/ tK"[:] are
proves that K(4l-module isomorphic. Consequently, the nonconstant

kerf= (TL,) = (KjNSpAT). D invariant factors of K,/(Kr n Sp, T ) are the same as the
nonconstant invariant factors of T which are the same as

Finally, the image off is obtained in the following, the nonconstant invariant factors of T since
Lemma 5.3.: Image of the map f is given by

imf ={([a+ MTK [zJ: a in K~L MT= I O
Proof- For any x in KT. there exists a strictly proper and M is unimodular. This completes the proof of the

Prof:theorem. 7
vector q such that .1 -- Tq. Consequently. we haveIprertoemTheorem 5.4 is a generalization of a result bv Fuhrmann

f(x) Mx + MTK"[:] (71 which states that if T is square and nonsingular. then
= +K, and K"[:] TK"[:] are K[:]-module isomorphic. We

MTq+ MTK[:1 = + MTK[:]. will now apply the results of Theorem 5.4 to obtain a
0 generalization of the theorem of Moore and SilVerman 119J.

Since Tq is a polynomial vector in K[:], it follows that In what follows. (F,, G(. H,) represents the Q-realization
f(. ) belongs to of Z = PQ 'R + U.

Theorem 5.5: Let ' ', and 41', respectit'ehv. denote the
a ] + MTA ,[ ]: a in K ,[ : ] ."largqest ( F,. (Q )-invariant and the largest reachabilitY sub-ttu 1 space in ker /I,. Let L,: KQ - K"' be a K-linear map such

Conversely. since t is full row rank, there exists a that
rational matrix S such that t.5 =11. Now let a be in K [:].
Then we have

M.,' _sa [a Then the nonconstant invariant factors of the linear map
MTSa 0 jf 0 induced bY ( [I, + Go Lt) on *,,/ *" are the same as the

nonconstant inrariant factors of the polynomial svstemn na-
Let I be the unique polynomial vector and q be the unique trix T.
strictly proper vector such that Sa I + q. It follows that Proof: As noted in Lemma 2.4. there exist constant

= T a T matrices I, and F, such that the columns of the poly-
TI. nonial matrix

Therefore. Tq is polynomial and. hence, belongs to K,. 4: = Tl(:I - F)
Furthermore

a ] constitute a basis for the K-linear space K, Furthermore.f( Tq ) = MTq + MTK" : = [J + MTK"{ :1. by Theorems 4.1 and 4.4, it follows that the map
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7rI: KT - '1'M: [] -. a of invariant factors of R divides the characteristic polynomial
b Jof F. Furthermore, if a is a given monic polynomial of

is a K I:-module isomorphism such that degree TI. which is divisible bY the product of the invariant
factors of R, then there exists a pair (H , Fl) such that the

'rI((KrflSp.T)) = q'. columns of RHI(:I - F,) ' constitute a basis for K, and the
characteristic polynomial of F, is a.

By Theorem 5.4, the nonconstant invariant factors of Proof: Let X denote the product of invariant factors of
KT/KrntfSpa T) are the sa asthe nonconstant in- R. Let us define D: RH,(:I- F1 ) . As in Remark 4.5.
variant factors of the polynomial system matrix T. Also, let Q be a p Xu nonsingular polynomial matrix such that
the module structure on *'M and ', corresponds to the Q 'R is strictly proper. Let (FG. HQ) be the Q-reali-
matrix F. Hence, by Lemma 2.4 the module structure on zation of Q 'R. Then by Lemma 2.4 it follows that K, is
,,41 ,/ corresponds to the action of the linear map in- the largest (FQ.GQ, )-invariant subspace in kerH,. Further-

duced by (FQ+GQLQ). and since KT/(KTtfSp-T) and more, there exists a K-linear map LQ: K,- K' such that
are K[z]-module isomorphic, it follows that the Q Q

nonconstant invariant factors of T are the same as the K. is .(FQ + GQL.)-invariant. and F, is the matrix repre-
nonconstant invariant factors of te lar mea ce b sentation of (F. + GQLQ) restricted to KR with the col-
nonconstant invariant factors of the linear map induced by umns of 4 as a basis for K. Let '*R represent the largest
( FQ + GQLQ) on *, ,/R- reachability subspace contained in kerH,. By Corollary

The next result is a simple corollary of the preceding 5.6. it follows that the nonconstant invariant factors of R
theorem . are the same as the nonconstant invariant factors of theCorollary 5.6: Let Z be a p X m strictly proper transferliermpndcdb(F,--G L)oK /'"Hn.X

matrix with right (respectivelv, left) matrix fraction repre- linear map induced by (F - GL) on K, R/',. Hence. X
senttio Z PQ-' (espct ivlv, = R. Lt Y divides the characteristic polynomial of ( FQ, GQ L.) re-

sentation 7 PQ ' (respectively. Z = Q 1R). Let Z stricted to KR which is the same as the characteristic
(FQ, GQ. HQ) be the Q-realization of Z. Let ', and "'R' polynomial of F.
respectively, represent the largest (F, GQ)-invariant sub- Let ,P be defined by /3: =a,'x . It nc, follows from
space and the largest reachability subspace contained in Wonham [25. Corollary 5.21 that there exists a K-linear
ker HQ. Let LQ: KQ - K" be a K-linear map such that ',, is map LQ: KQ - K such that KR is (f' - GL, )-invariant.
(FQ + GQLQ )-invariant. Then the nonconstant invariant fac- the characteristic polynomial of ( F + GC, Lc, restricted to
tors of the linear map induced by (FQ + G LQ) on , / q,'R 'R is ft. and the characteristic polynomial of ( F, GQ L)
are the same as the nonconstant invariant factors of P restricted to K, is a. By Lemma 2.4. there exist constant
(respectivelv, R). matrices H, and F, such that the columns of Rtt,(:I -

Proof: By Theorem 5.5, the nonconstant invariant fac- F1 ) constitute a basis for K, and the characteristic
tors of the linear map induced by (FQ + GQLQ) on *'M /'t*R polynomial of F, is a. This completes the proof.
are the same as the nonconstant invariant factors of the
associated polynomial system matrix. If Zz PQ , then VI. STABILIZABILITY SUBSPACES
the system matrix is given by

Throughout this section we assume that the field K is the
T /  field of real numbers denoted by R. In what follows a

T= _ 01." general type of stability is considered as in Wonham 125]
If we define and Hautus [II], [12]: we are given a subset C of the field

of complex numbers C. satisfying the condition that
1 01 C nR is nonempty and C is symmetric about the realM: - Q -Iaxis. A polynomial with real coefficients is said to be stable

iff all of its roots are in Cthen M is unimodular. Now we have Let x --(F(. G,. H,) be the Q-realization (see Section

[1 r 0_p I11) associated with the strictly proper p X mi transfer matrix

"0 Z=PQ 'R+U.
and, hence, the nonconstant invariant factors of T are the
same as those of P. This completes the proof for the case A subspace M of RQis said to be a stabiliability subpace
Z = PQ '. Proof for the left matrix fraction description (see Hautus 1111. 1121) if and only if there exists a linear

Z =Q 'R is similar. ] map
We will now establish a result that will be useful in LQ: RQ R

obtaining a characterization of the largest stabilizability
subspace contained in ker H,. (See Section VI. Theorem such that M is (F + GQLQ)-invariant and the characteris-
6.1.) tic polynomial of (F(,, + GQLQ) restricted to M is stable. It

Corollary 5.7: Let R be a #s X P polynomial matrix and let has been shown in Wonham 1251 and Hautus 1111, [121 that
the dimension of the K-linear space KR be i?. If H. F are stabilizability subspaces are very useful in studying stabil-
constant matrices such that the columns of RHI(:l - F,) I ity properties associated with system synthesis problems.
constitute a basis for the K-linear space K,, then the product In this section we establish a characterization of and give a
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constructive procedure to obtain the largest stabilizability such that SpiV is (FV+GL,)-invariant and the char-
subspace of contained in kerfl . acteristic polynomial of (F, + GL) restricted to SpV is

The following theorem is the main result of this section. stable. If we choose the columns of V as a basis for SpV.
Theorem 6.1.: Let T be the polynomial system matrix of then there exist constant matrices and F such that

the strictlV proper transfer matrix

Z=PQ 'R+U
and the characteristic polynomial of F is stable. Let us

where Q 'R is strictly proper. Let .'' bhe the n- define ' as
variant factors of the polynomial matrix T. Let c,' and c, be
such that *: = T(z - )

- i= 1.2..,q It now follows that

where c,' is the unstable factor of , and c, is the stable lactor (T' ) - f( i - f)
of ,. Let T' andT be(p+r)X(p+r)and(p+r)X r
+ m) polynomial matrices such that Now the denominator polynomials of the rational matrix

= T(T' ) '' are unstable, whereas the denominator poly-
nomials of the rational matrix T H (zi - 13) I are stable.

T' is nonsingular with invariants factors c. .. Hence, T !i(:1- 1) must be a polynomial matrix. Thus
c 1. . .1. and the invariant factors of T are c, c, we have
(,.0.....0. Then ir(T'RT ) is the largest stabilizabilitv
subspace contained in ker HQ, + Tfl1(zl - 1) n= T' T Hi(z - f) C T'R,

Proof: It is clear that a stabilizability subspace is
necessarily an (F,. G.)-invariant subspace. We shall first and consequently

prove that ir(T' R r ) is a stabilizability subspace con- SpRr( 4 ) c (T RT ).

tained in kerlH.
It follows by the definition of T that the invariant This completes the proof of the theorem. 11

factors " T are stable. Now by Corollary 5.7 there exists Theorem 6.1 also provides a constructive procedure to
an observable pair of matrices (H, F,) such that the obtain the largest stabilizability subspace contained in
columns of the polynomial matrix kerH. The procedure can be outlined as follows.

1F 1) Using the invariant factor algorithm for polynomial
) =T Hl(:I- F1 ) matrices (see, for example. Lang [17. ch. 151). find unimod-

ular matrices M and N such that MTN is in Smith formconstitute a basis for the R-linear space R r and the
characteristic polynomial of F, is stable. Let us define with invariant factors (*2) Define T' and T as follows:

4 1' : T ' 41 = T H ( z I - F , T 'M)i a
I

,

Then we have
and

iT(SpR R )=-(T R r ).

By Lemma 2.4 it follows that ir(T* Rr ) is an (F,. GQ)-in-
variant subspace in kerHQ and there exists an R-linear
map

T•
LQ: RQ ( R 0 ... 0.. 0

such that ir(T'Rr ) is (FQ+GQLQ )-invariant and the
matrix representation of (F +GQLQ) restricted to 0 ... 0 ... 0

ir(T'Rr ) is F, Finally, since the characteristic poly-
nomial of F, is stable, it follows that ir(T'Rr ) is a 3) As described in Remark 4.3. construct a polynomial
stabilizability subspace contained in kerlHQ. matrix b such that the columns of 4 constitute a basis for

We will now prove that any stabilizability subspace the R-linear space R r

contained in ker H, is contained in ir(T* R, ). Let V be a 4) Then the columns of the polynomial matrix i'(T" b)
polynomial matrix whose columns constitute a basis for a constitute a basis for the largest stabilizability subspace
stabilizability subspace contained in kerH,. Now, by the contained in kerIlQ.
definition of stabilizability subspaces it follows that there Thus. Theorem 6.1 provides a characterization of and a
exists an R-linear map constructive procedure to obtain the largest stabilizabilitN

subspace contained in kerH. in terms of the system matrix
LQ: RQ - R"' T.
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